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Abstract

A design for a novel prototype finite element system is

presented which meets the following four goals: (a) The system

constitutes an application-independent finite element solver

for a certain class of linear elliptic problems based on a

weak mathematical formulation ; (b) it incorporates extensive

adaptive approaches to minimize the critical decisions demanded

of the user; (c) it incorporates adaptive error estimation

techniques to provide an optimal solution within a prescribed

cost range; and (last but not least) Cd) it takes advantage of

natural parallelism and modularity to increase the size of the

practically solvable problems. The overall system structure is

described in terms of parallel processes and is implement-

able on a wide variety of hardware configurations. The experi-

ments planned to evaluate the various new approaches are alsc’~

presented.
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DESIGN OF AN ADAPTIVE, PARALLEL FINITE ELEMENI’ SYSTEM

Pamela Zave and Werner C. Rheinboldt

1. Introduction

In the past two decades the finite element method has found increas-

ingly widespread application in nearly all, areas of engineering and science.

Many, often large, software systems based on the method have been developed

and are used extensively (see, e.g., [1]). However, most of them have a

relatively inflexible program structure and demand of the users numerous

critical and frequently difficult decisions.

At the same time recent years have brought considerable advances in

the theoretical analysis of the method and in the development of efficient

solution procedures as well as in the understanding of modern software

systems. There appears to be a considerable need for utilizing these and

related advances in the design of the next generation of finite element

software.

Various authors have sumarized current trends in the design of the

next generation of finite element programs (see, e.g., [2],[3]). The follow-

ing idealized design criteria may be somewhat more radical but appear to

us highly desirable and yet in the realm of practicality :

(1) The programs should be designed not so much for specific classes

of applications, but instead should constitute more general “finite

element solvers” of entire classes of partial differential equa-

tions. This will ensure a much broader applicability and provide

also for a closer interaction with the theoretical foundations.



r
(2) The programs should incorporate extensive application of adaptive

solution methods in order to relieve the user of the burden of

many of the critical a-priori decisions he now has to make.

(3) The overall process should produce a solution which meets optimal

accuracy requirements within a prescribed range of computational

cost. Hence the design should include well thought-out provisions

for the assessment of the relevant errors and computational costs.

This is also essential for the desired adaptive control of the

course of the computation.

(4) The system should be designed to take advantage of any natural

parallelism and modularity of the finite element method. This

represents practically the only open avenue toward gaining signi-

ficant improvements in overall solution time or in the size of

the solvable problems.

Clearly these design criteria are still ideals, and much work will

be needed before they can be fully realized . However , as ment ioned before ,

they are within the realm of practicality.

In substantiation of this claim we present here the design of an

experimental finite element system that incorporates the principal aspects

of all four criteria. The design is based on earlier work ([41-[9])

about the questions behind (1), (2), and (3), as well as on recent results

([l0J-[12]) about parallel process structures and their specification.

The introduction of parallelism appears to be a particularly novel

aspect of the design. This parallelism is on the procedural level rather
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than the instruction level because there the expected payoff is much

greater. We note that execution of the numerical algorithms by parallel

programs for vector processors is neither included in, nor precluded by,

the design.

Parallelism is specified in terms of processes which are autonomous

units with their own programs and data. Processes run in parallel and

communicate asynchronously in a limited and highly structured manner .

In the design the local data of a process contain almost all the

information needed by the functions computed in that process. If this

were not so , the overhead and delays of interprocess communications would

readily smother the expected parallelism. Thus the process structure

induces on the finite element data a segmentation which is rather natural

to the problem and can be used as the basis for intelligent storage manage-

ment in the environment of a single large computer. L~ ta segmentation may

prove as important as parallelism in expanding the si ze of the solvable

problems. In fact, it enables our system to perform automatically the

problem segmentation that is now carried out at the user’s level.

The use of parallel processes in the design makes it possible to apply

multiple processors effectively, hopefully for significant gains in speed

(we conjecture that the fastest possible implementation of this approach

to the finite element method would be on a network of small computers with

communication links to fit our structure). This does not limit the design

to such specialized architectures, however; the operating system of a typical

large computer simulates parallel processes, and the data segmentation men-

tioned above should provide significant advantages.

, , •
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In chapter 2 below we present the theoretical background for the

finite element computations incorporated in the system . Chapter 3 de-

scribes the systems design itself , and Chapter 4 introduces the experi-

mental system now under construction and summarizes the performance

evaluation mechanisms that will be included in it.
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2. The Mathematical Basis of the Design

By necessity our attention had to be restricted to a specif ic class

of problems that is sufficiently broad to allow for meaningful conclusions

and yet narrow enough for easy implementation as an experimental system.

Our choice was a fairly general class of linear , stationary , elliptic

boundary value problems on certain two-dimensional domains. At the same

time, throughout the design we refrained from using approaches that would

not admit extensions to more general problems.

In line with the first design criterion the system is based on a

weak formulation of the given problem in terms of an appropriate bilinear

form B on certain Hilbert spaces 11l~
I12 and a corresponding (load)

functional f on In other words the underlying mathematical problem

is to obtain the (unique) u0 E Fi~, such that

(2.1) B(u0,v) = f(v) , V v E 112

The finite element method then proceeds to the construction of suitable,

finite-dimensional subspaces M1 
c H1, M2 

C 112 and the numerical computation

of the solution E H1 of

(2.2) B(ü0,v) = f(v), V v E M2

The choice of B and f determines the problem and the structure of the

finite element method. The selection of the spaces H1,l-12 affects the

norms used in the error analysis and hence the adaptive control of the

overall solution process. Finally the spaces M1,M2 derive from the

selection of the specific finite elements; that is, their definition is

~
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equivalent to the construction of a particular finite element mesh on the

given domain ~ c R
2. Our use of adaptive mesh refinement, of course ,

involves consideration of a sequence of subspace pairs M1,M2 during the

course of the overall solution.

We refer to [13] for the theoretical background of the above formu-

lation and to [7 1 for some of the reasoning behind its use as a basis for
our system design.

Many practical finite element applications employ a so-called

substructure analysis (see, e.g. [141 where other references are also

given). Broadly speaking the domain s~ is defined as a union of sub-

domains and on each one of them a finite element mesh is introduced. The

solution then proceeds in levels; that is, all degrees of freedom internal

to each subdoinain are eliminated first and then, with the substructures

acting as “superelements”, the full solution is obtained.

This technique suggests a natural parallel process structure for the

finite element system. In fact, to a considerable extent the computations

on the different substructures are independent of each other. Hence we

may consider associating each one of them with one (or several) individual

processors wi ich in turn operate essentially in parallel. This basic

design concept will be ~ ve1oped further in subsequent sections. We

observe that the subdomain segmentation of the data and processing is

the same as that used in large industrial applications, except that ours

is automatic and flexible, while current finite element systems demand that

their users create a rigid segmentation at the manual or even managerial

level!

_ -~~~~~~~~~ -
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For the domain 2 C R2 we are led to assume that 2 is the union

(2.3) 2 = 2l, U 22 Ii ... ~~

of f ini tely many closed , bounded subsets C R~ which have nonempty

interiors such that

(2 .4)

For the design of a reasonably efficient mesh refinement algorithm ,

further restrictions on the choice of the subdomains are desirable. We

assume here that each is a diffeomorphic image of some fundamental

figure in R2 on which a simple hierarchy of subdivisions can be defined .

For simplicity of the implementation , the experimental system employs only

one fundamental figure , namely , the unit square

(2. 5) = {
~~ E R2 0 ~~ ~~ , ~~ ~~ l}

The use of other figures does not introduce any particular difficulties

and, with appropriate interface provisions, different fundamental sets

may be used to define the various subdivisions.

We call ~ and its interior Q the closed and open base square.

The corners of ~ are denoted by point. (Q), i = 1,2,3,4, the closed sides

by side
~
(Q) and their relative interiors by side~ (Q) , i = 1,2,3,4.

For each subdomain 2~ a diffeomorphisin 4~ 
is given that maps Q

onto 
~~~~~~

. tvbreover, we assume that for any i ~ j exactly one of the follow-

ing conditions holds :

t

~~~f’~ ~~~~~~~~~~~~~~~ - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(i) 2~~fl 0

(ii) = 4~ (point~ •
(Q) ) 4~ (Point~~(Q) )

(2.6) (iii) 
~~~

. fl ~~~. 
= ~p .ts ide~ (Q)) = 4~~jT~~ (Q)), and the3 i 3 j

restriction of to ~I~~~(Q) is identical with

the restriction of to ~~~~ (Q).
3

The open subdomains S2j, shall be called 2-subdomains. By (2.4)

it is meaningful to speak of the open and closed sides of 2~, namely ,

the sets side
~
(2
~
) = 4t~ (side~ (Q) ) and 

~
i
~~~

(S2
~
) = 4r~(~T~~~(Q)), Z = 1,2,3,4,

respectively. The open sides of are named 1-subdomains. Finally we

define the points of 2~, by point~(21) 
= 
~
F
~
(point

~
(Q)) and call them

0- subdomains.

Each closed side of is the diffeomorphic image of the unit

interval I = {s E 0 ~ s ~ 1). For the implementation only these one-

dimensional mappings are given and the mappings 4’~ are constructed by

standard bivariate blending techniques (see, e.g., [15]).

C s� be the union of the i-subdomains, i = 0,1,2. Then we

consider the second order form

~ 

~~~~~~~~~~~~~ , ~~i ~~~~~~~~~~~~~~~~~~~~ -- .--~~~~- -. - - - —5 —-- - -— —-;-- ‘--
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m r 2 . .  ~u . av .
B(u ,v) = f ~ I ~~ a~’~ (x) 

~~~~~~~~~~~~~c~ i ,j=l~~k ,R.=l ‘ k 9~

+ 
~~(b k (x) vj + B~

’3 (x)u~ ~~
)+ c1~3 (x)u.v.] dx

(2.7)

m+ici I . . ~u. ~~~~~
. . . ~u .

+ f 
~ [

~ct”3(s) 
_
~
_
~._ ~1 + ~‘~3 (s) ~~~~~~~~~~~~~

c2~
1
~

+ ~~‘3 (s)u1 ~~~~ + Y
1
~~~(S)U1

U
J]d

S

Here we have

u = (u1,. . . 
~~
U

m~~
Um+l~~~~

v =

where the functions ul,...,um,vl,. ,v~ are defined on s~ and the remaining

ones on ~(l) u Q (0)

In general the right side of the equation (2.1) has the same form as

(2.7) after u is fixed; but , of course , the coefficients may be different.

It should be evident how more general classes of forms may be defined.

The formulation (2.7) is already fairly general. It includes not only

most classical problems and finite element methods but also the elliptic

problems of Douglis-Nirenberg type, the forms arising in the use of the

least squares method for first-order systems, various versions of the

Lagrange mult iplier methods , and many others.

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ,~~~~~ , ~~~~~~~~~~
‘
. ~~~~~~~~~~~ —-5-5 -5-
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For the implementation a library of coefficient functions is intro-

duced from which a set of coefficients is chosen fox each 2-subdomain

and 1-subdomain. It will have to be assumed that B satisfies the condi-

tions required by the theory (see, e.g. (13]) on some pair of hu bert

spaces H1,!-!2. As mentioned before, the spaces H1,H2 only affect the

norm used in the error estimates. A library is provided for computing

the function norms on the most important spaces .

The mesh on each ?~. consists of curvilinear elements which are

first defined on the basic square Q and then mapped into c~ . The

element selection in Q is restricted by the condition that only those

elements are to be used which would arise in regular subdivisions of Q.

Hence our choice of the unit square Q as basic figure implies that the

elements are defined either on squares of the form

(2.8) q = {(~~
) E Q ih ~ ~ (i+l)h , jh ~ ~ (j+l)h},

h = 2 ~~ , 0~~~i ,j

or on right triangles obtained by subdividing these squares along a fixed

diagonal.

In order to simplify the discussion we confine ourselves here to

bilinear elements on the squares (2.8). Higher-order Lagrangian or liermi-

tian elements could be used as well; they only increase somewhat the level

of complexity of the programs. It should also be noted that the use of

adaptive mesh refinement reduces somewhat the need for high-order elements. 

L ~~~~~~ ~~~~~~~~~~~ , - ~~~ - .~~~~~~~
.
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The admissible meshes on Q may be defined recursively by the

two rules :

(i )  A mesh I on Q is admissible if it cons ists of all 22k

squares (2.8) wi th a fixed h = 2k, k ~ 0.

(2.9) (ii) If T is an admissible mesh on Q, then the mesh T’ is

admissible that is obtained from T by subdividing any one

single square q of T into four congruent squares of half

the side-length of q.

Figure 2.1 shows an example of an admissible mesh on Q.

_______  _______  
3 _______

4 _ _ _ _  _ _ _ _

Figure 2.1

1
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In such meshes some elements of different size border on each other.

The resulting “illegal” nodes--in Figure 2.1 marked by circles--can be

handled in a variety of ways. For simplicity, the values at these

illegal nodes are defined here by continuity . For instance , in our

case of bilinear elements the elementary stiffness matrix K of the

hatched element depends on the five numbered nodes. If K 0 represents

the usual stiffness matrix of that element , then K = LTK0
L where L is

an easily computable interpolation matrix. While the legality or illegal-

ity of the nodes on the boundary depends on the mesh in f~, the informa-

tion needed to compute any K does not .

The mesh refinement procedure is described in [8), and we shall not

repeat the details. Briefly , from the finite element solution on some

mesh on c2 cer tain error indicators are computed for each element . As

shown in [8], [9] these indicators provide a basis for the computation

of highly realistic a-posteriori error estimates of the overall solution.

~vbreover, it turns out that in a certain sense the mesh is “optimal”

among meshes of the same total degree of freedom if all its error indica-

tors are equal. While the geometric specification of the optimal mesh is

not very stable , that of the opt imal error value certainly is stable.

Accordingly, we need not strive for overly exact equality of the error

indicators. For this, two “cutoff” numbers Chigh and t low are deter-

mined which specify that all elements with indicators above Chigh have

to be refined and that those elements with values above Clow are to be

included in the reassembly and subsequent solution of the macro-stiffness

matrix. On all other elements the present solution is retained and- -where

needed- -used as a boundary condition.

-5.--- - --



~ 

- 13 -

The process is started with a uniform mesh of the form (2.9i)  on

all all error indicators set to ‘~~ and Chigh 
= 

~~~ 
C low = 0. rt

terminates either when the error estimate based on the computed indica-

tors falls below a given tolerance or when a prescribed maximum computa-

tional cost is exceeded.

Thus a basic solution pass has the form :

1. Determine the cutoffs c . and chigh low
2. Check for termination ;

3. Refine all elements with indicators above chigh;

(2.10) 4. Compute the micro-stiffness matrices for all elements with

errors above Clow and assemble the corresponding macro-

stiffness matrix;

5. Solve the resulting equations;

6. Compute the error indicators for all elements involved in the

Solution .

For details we refer to the next section.

In the experimental system standard sparse matrix approaches and

elimination techniques are used in the numerical solution of the macro-

stiffness equations. It should be noted here that the tree structure of

the refinement process leads naturally to a very effective ordering of the

equations and unknowns . Alternately iterative procedures can be used

throughout the intermediate solution passes. In either case a direct

solution on the complete final mesh is strongly indicated. This can be

accomplished by performing a f inal solution pass with Chigh 
= 

~~~ 
Cloy = 0. 

_ _ _ ~~~~ L~~~~~~

_
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3. The Systems Des ign

3.1 Requirements

Besides the design criteria mentioned in the introduc tion, the system

is to incorporate the following user interface features :

(1) A problem is defined by a given domain s� , bilinear form B, and asso-

d ated error norms . Each instance of the system is initialized with a

particular problem . It can acconm~ date several users working simulta-

neously on this problem , each one with his own boundary conditions ,

load functional , sequence of meshes , and solutions.

(2) The design is to provide for a “front-end” with user-oriented features

such as

(a) pre- and post-processing facilities;

(b) graphics;

(c) a library of bilinear forms and associated norms , retrievable by

classifications associated with the fields of study and the charac-

teristics of the physical problems;

(d) a command language that can be used at varying levels of sophis-

tication.

In addi tion, the sys tems design should meet the following performance

goals:

(3) The system must incorporate as much procedural parallelism as possible.

(4) Data are not to be stored redundantly since most data structures in

practical finite element systems are large in size.

(5) For effective storage management the data sets should be factored .

(6) The design should be implementable on a variety of computer systems. 

~~~~~~~~~~~~~~~~~~~~
- - .
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3.2 The Overall Process Structure

Formally a process is a pair (E , f) consisting of a state space 2,

that is , a set of possible values or states of a data structure , and

f : 2 -+ �~ a successor function . Hence a sequence of states

is a computation of a process (2 ,f) if E 2 and = f(o~ ) for all

i ~ 1. Sets of asynchronously interacting parallel processes are ab-

stract characterizations of digital systems and hence can be implemented

in many ways.

The design discussed here has been formally specified in terms of a

language based on the above abstract process concept (see [12]). In this

chapter we present only an informal description of the process structure

and the interprocess communications. A more detailed, semi-formal pre-

sentation in terms of an ALGOL-like language is given in the appendix.

As indicated earlier, the design is based on the idea that parallel

activities reside in different processes . In line with the discussion of

Chapter 2 , the following areas of potential parallel ism were identified :

(1) While one user proceeds with a finite element solution, other users

can use the “front-end” facilities described in Section 3.1.

(2) Operations that can be carried out in parallel on different parts of

the domain include:

(a) adaptive refinement of the mesh;

(b) computation of the micro-stiffness matrices ;

(c) computation of the error indicators on each element.

(3) Daring many solution passes a new solution is computed only on a

subset of the existing nodes. If these active nodes fall into different

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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noncontiguous subdomains, the corresponding l inear sys tems are inde-

pendent of each other and can be solved in parallel.

Corresponding to this, the design incorporates three principal classes

of processes :

(1) The ~~~~~~~
‘- - -ses , each representing one of the current systems users.

(2) The ge~r ..-, corresponding to the 2- , 1- , and O-subdomains

describ~J i1. . .

(3) The l inear systems solvers .

The state of a user process contains the data par ticular to that user

and any information needed for post-processing, graphics, etc. In the

formal specification of the system, a user process represents both human and

automatic components. For example , there is a primitive function “satisfied”

which represents a predicate whose value indicates whether or not the user

wishes to continue refining his solution . It might be evaluated by print-

ing the arguments at a terminal and receiving a human response. Other

primitive functions in the specifications can be elaborated to provide

user interface features (2a)-(2c) of Section 3.1.

As outlined in Chapter 2 , we defined our domain as a union of sub -

domains for the expressed purpose of allowing for a natural process decom-

position along geometric lines. Since closed subdomains intersect and

hence introduce redundant data, we are led to work exclusively with open

subdomains. Accordingly a separate process is associated with each one of

the 2- , 1- , and 0-subdomains defined before. Figure 3.1 shows these pro-

cesses for a simple (straightlined) domain.

~~f ~~~~~~~~~~~~~ 
- ~~~. 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
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Each of these processes contains in its state all the information

relevant to that particular subdomain. This includes the bilinear form,

Eli ‘-~ i~ 1T ‘-~~

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  

EM ~~~~~~~ 

~~~EH ~~~~~~~~

‘-‘ i~~1 ‘-~-JE~
23 i 1j

_ _ _E~ I L ‘- ‘a

domain subdomain processes

Figure 3.1

load functional , mapping between the base figure and the subdomain,

boundary conditions where they apply, as well as the current mesh data and

associated solution. In keeping with the performance goal (4) of 3.1 the

only data-set stored more than once is the adjacency relation between the

subdomains; clearly this is not a large set.

~~~~~~~~ —-~~~~~~~~~~~~ ~~~~~~~~ ---- ---.L-- ._~_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~.
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The successor functions of the geometric processes perform all the

necessary numerical computations except for the assembly and solution of

the resulting linear systems of equations. In particular 0- and 1-subdomain

processes answer questions from other processes about their local data,

update themselves with new nodal points, new solution values , etc. ,  and

report on demand any needed status information. The 2-subdomain processes

do the same, and, in addition, they refine their portion of the mesh, and

compute micro-stiffness matrices and error indicators for the elements

within their boundaries.

The final class of processes represent the linear systems solvers

which have no permanent data. These processes set up the sparsity struc-

tures for the linear systems, assemble the macro-stiffness matrices, and

solve the resulting linear systems.

The efforts of the various processes are orchestrated by a central

control process. It receives commands from the current user , gives commands

to the geometric processes and the systems solvers, receiv es repor ts from

them, and sends reports back to the user.

3.3 General Systems Operation

As mentioned in Section 3.1, each instance of the sys tem is ini tialized

with a particular domain, bilinear form, and associated error norms. A

potential user has to wait until the system is not in use; then he gains

exclusive access to it. The user then distributes his specific boundary

conditions , load functional , mesh, and associated solutions to the appropriate

-- ~~~~~~~~~~~~~~~~~~

--

~~~ ~-i~~
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geometric processes and his status record to the control process. If

this is the user ’s f i rs t turn, then the mesh supplied has no solution data

and the status record is “empty”.

After these initializations the user gives a command to the control

process , which in turn executes it and returns a report to him. This is

repeated until the user is satisfied , whereupon he rece ives an updated

status record from the control process and gets his specif ic data, updated

mesh, and associated solution back from the geometr ic processes. He may

then begin a post-processing phase or return to inactivity.

Basically a user ’s command tell s the system to refine the current mesh

and to solve the resulting (linear) system(s) so as to achieve a prescribed

maximal error on the elements without exceeding a given cost. In this section

we give an overview of the principal phases of the execution of a command

and postpone to the next section a discussion of the cost definition and

of the details of the various control decisions.

Generally the execution of a command may consist of one or several

solution passes as defined by (2.10). After each solution pass the control

process updates a status record containing the data needed for the decisions

involved in continued execution or termination. This is the status record

received by the user at the end of his turn.

A solution pass begins with the decision about the cutoff values

thigh and £low by the control process. The user can set a flag in the

status record to override this automatic decision procedure, either by

invoking a different user-specified decision process or by deciding himself

from a terminal. 

~~-— _ _~~~~~~~~~~~~~~~
-
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After chigh 
and C low have been determined , these values are sent

to all 2-subdomains. This begins the refinement phase. The 2-subdomains

proceed to refine their individual meshes in parallel. In general this

entails queries and update messages to the adjacent 0- and 1-subdomains.

When its refinement is completed, each 2-subdomain process sends to the

control process a report listing all the nodes where a new solution is to

be computed (active nodes) and giving the total number of elements to which

they belong (active elements) as well as the number of refined elements.

When all these repor ts have been obtained , the control process requests

all 0- and l-subdomains to determine from the updates received which of

their nodal points are active. The refinement phase is completed when all

geometric processes have sent their reports.

Now begins the solution phase. The control process determines the

disjoint subsets of nodes where a new solution is to be found. For details

of this decision we refer to the next Section. The list of nodal points

belonging to any such subset is sent to a specific solution process, and

the identity of that solution process is communicated to the 2-subdomains

that have to supply the corresponding micro-stiffness matrices. From then

on several activities proceed in parallel. The necessary micro-stiffness

matrices are computed within the various 2-subdomain processes, which in

turn query neighboring 0- and 1-subdomains for all necessary information.

The solution processes set up and assemble their particular (independent) 
S

blocks of the macro-stiffness matrix, incorporating the micro-stiffness

matrices from any 2-subdomain whenever they are ready. When such a block

~~~ _.. : - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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assembly is complete, the corresponding linear system is solved and the

solutions are sent back to the geometric processes which own the corre-

sponding nodes. When a 2-subdornain process receives a new solution,

it calculates new indicators for its elements, estimates the values that

may be expected if the elements were to be refined, arid sends a report

about the results to the control process. All this parallel activi ty

becomes resynchronized when the control process has received a repor t from

all active 2-subdomains and used it to update the status record. This

ends the solution phase and with it the solution pass. It should be ob-

served that the parallel computation of the micro-stiffness matrices and j
of the error calculations provide opportunities for inter- and intra-

process parallelism .

3.4 Control Decis ions

In general user commands are of the fo rm (des ired error bound, cos t

limit, limit on the number of solution passes) and correspondingly the

return repor ts have the form (achieved error bound , cost used, number of

solution passes used , total cost used so far during the turn).

The cost expended so far in executing a command is the accumulation

of the costs of all the previous solution passes. The cost of a solution

pass is known and recorded at the end of the refinement phase when the

control process has a report from each subdomain process containing a list

of its active nodes and, from each 2-subdomain, the numbers of refined and

active elements. Let r and e be the total numbers of refined and active

elements respec tively and n1 the number of active nodes in solution subset

i. Then the cost is approximated by

~ 

-~~ -~ -~~~~~~
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(3.1) c1r + c2e + ~ (c 3n.÷c4n~) + c5e

The constants c1,. .. ,c5 are implementation-dependent. Some comments about

their determination are given in Chapter 4. General ly c1 is the unit

cost of refining an element, c2 the unit cost of computing a micro-stiffness

matrix , c3 the cost per node of setting up a linear system, c~,
”3 the

cost per node of solving a linear system, and c5 the unit cos t of calcu-

lating the error indicator for an element. For later use the ratio

(3.2) d = ( ~

is also recorded at this time.

At the end of the solution phase each 2-subdomain process sends to

the control process its achieved error bound, recommendations for high

and low cutoffs , and a li st of pairs (c~~e~). The recommended high cut-

offs are computed according to the algorithm given in [8] and for the

low cutoffs a natural modification of that algorithm is used. The mentioned

pairs (&~~e~) consist of the number e~ of elements in this 2-subdomain

with error indicators not less than e
3

. Here the are numbers selected

a priori, including zero. This list of pairs allows the control process to

estimate the effect of a cutoff decision without knowing the error indicators

of every element.

The control process now determines the values £high and C low as

the maxima of those recommended by the 2-subdomains . From the l is t of pairs

(~ ., e.) it then estimates the number r ’ of elements to be refined and the

number e ’ of active elements . With these the cost of the potential solution

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~.~~
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pass is approximated by

(3.3) c1r ’ + c2e’ 
+ c3de ’ + c4 (de ’) 3 

+ c5e’

where c1,. . ., c5 are the same coefficients as in (3.1) and d is the

ratio (3.2) . In general this overestimates the cost since it is assumed

that the macro-stiffness matrix will not be decomposed into independent

blocks . The use of the ratio d to estimate the matrix is based on the

assumption that this ratio does not change too much for a g iven problem .

If the estimated cost (3.3) exceeds the difference between the cost

limit and the cost used so far, the execution of the command is terminated .

The same is true when the computed a-posteriori estimate falls below the

desired error bound. As mentioned before, the user may override these

decisions . In par ticular he may order a recomputation of the solution on

all nodal points without any further mesh refinement by setting 
~hig 1’ =

£ = 0 .low
The algorithm for the decomposition of the solution subset is based

on the adjacency relation between subdoma ins . Active nodes are placed

into the same solution subsets if they belong to two adj acent (open) sub-

domains . For example , in the case of Figure 3.2 there will be exactly two

solution subsets consisting of the active nodes in the subdomain unions

(1-1) U (2-1) and (2 -2) U (2-3) U (1-3) U (1-4) U (1-5) U (0-1), resp ectively. 
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4. The FEARS Experiment

4.1 Implementation

The design described here will be implemented, not as a production

system, but as an experimental system for the evaluation of the various

new ideas in it, in particular the adaptivity and parallelism approaches.

The evaluation techniques will be described in Sections 4.2 and 4.3.

The FEARS (Finite Element, Adaptive Research Solver) sys tem will

be a FORTRAN program running on a UNIVAC 1108 under EXEC 8. It will simu-

late parallel processing and use the process state segmentation as its

sole storage management mechanism. It will be structured as an interpreter

of the formal spec ification of thi s design, calling upon numerical routines

as primitive functions.

Our schedule calls for the completion of implementation in Spring

1978 and experimentation during the Summer of 1978.

4.2 Evaluation of Adaptivity

i t is impossible to quanti fy the convenience to the user of an adaptive

system . All we can measure is the re lative cos ts of adaptive and nonadaptive

solutions .

The adaptive and nonadaptive cost of executing each command will be

recorded. The adaptive cost isneasured as described in Section 3.4. The

nonadaptive cost is understood to be the cos t, as computed by (3.1), of

one solution pass for a uniform mesh with elements the size of the smallest

elements used in the adaptive solution.

~~~~~~~~~~~~~ —
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As ment ioned earlier , the constants c~ in (3.1) and (3.3) are

implementation-dependent, but their ratios should be much the same for

any implementation . They will be approximated for our purposes by timing

representative code on an otherwise idle machine . The overhead of inter-

process communication will not be included , as that is considered in the

evaluation of parallelism .

4.3 Evaluation of Parallelism

Without measurement we cannot show that the performance goals (1)

and (3) of Section 3.1 have been met , that is, the goals of ‘~ffective

parallelism and useful data segmentation . It is also necessary to see

that the benefits of parallel structure are not outweighed by the attendant

interprocess communication overhead.

The measure of parallelism will be a “speedup factor ,” which quanti-

fies how many times faster an implementation with an arbitrarily large

number of processors could f inish a problem than an implementation wi th  a

single processor of the same speed . I t  cannot be determined by sampl ing

techniques because analytical results do not apply to pcrallel activities

with such a high degree of interdependence . Therefore we will  treat each

“run” of a process , which is uninterrupted by the need to communicate , as

a separate task and record how long it took and which other tasks it enabled

to rim when it stopped in order to comunicate . This info rmation wil l  later

be fed through a simple infinite-resource simulator to determine the average

speedup .

- — — -~~-~~~~ ~~~~~~~~~~~~~~ — - —  - ~~~~~~~~ -——~ — ‘ ~~~~~~~~~~~~~~~~~~~~~~~~



—~ ‘ -—— - - - - -~~~~~~~~~~~~~~~~~~ -- — - - ——- - — — —------

- 27 -

Data segmentation will be measured by the numbers of elements and

nodes in subdomain processes and the numbers of points in linear systems.

These are good implementation-independent indicators of relative sizes of

the data structures.

Communication overhead will be measured simply by counting the number

of communications which take place.

These implementation-independent measurements will he taken separately

over the refinement and solution phases of every solution pass. For proper

evaluation it will be necessary to relate them to problem-dependent factors.

The observed speedup factor, for instance, is highly dependent on the

number of 2-subdomains. Therefore the post-execution processor of this data

will provide roughly calculated “eff ici ency fac tor s” relating observed

and ideal quantities. The output is summarized in Table 4.

The final evaluation of these numbers, of course , cannot be done

independently of an implementation. For instance, more efficient communica-

tion mechanisms make a higher overhead rate feasible .
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Phase of Output Purpose of
Solution Pass Factor Output Factor

speedup measure of effective
parallelism

number of communications measure of overhead

numbers of nodes and measure of data segmentation
elements in all 2-sub-
domains

refinement
phase number of 2-subdomains used for comparisons

speedup/number of 2- efficiency factor for
subdornains parallelism

number of communications! efficiency factor for
total number of elements overhead

speedup measure of effec tive
parallelism

number of communications measur e of overhead

numbers of points in all measure of data segmentation
linear systems

solution number of 2-subdomains used for comparison
phase

number of linear used for comparison
sys tems

speedup/[(number of 2- efficiency factor for
subdomains)+(number of parallelism
linear systems)/2]

number of communications! efficiency factor for
total number of points overhead

Table 4

~~~ ~~~~~~~~~~~~ - 
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Appendix : Detailed Process Descriptions

In the actual system the numbers of all types of processes are bounded ,

and the full set of processes exists in a static structure even when some

are not in use. The processes which are being used are called the “bus y”

processes .

For readability the actions of successor functions will be described

in a pseudo-programming language. Comments are in square brackets.

User Processes

Named IX) through Ubu~ 
where bu is one less than the bound on the

number of users.

State contains:

(1) phase ( is this the initialization step or a subsequent step?);
(2) adjacency relation on existing subdomains;

(3) status record;

(4) load (the boundary condi tions and load functional for this user ,

divided and indexed according to subdomains);

( 5) mesh (the current mesh for this user , with solutions, divided and

indexed according to subdomaths);

(6) whatever local data is needed for pre- or post-processing.

Successor function:

begin [Step of user process.]

if “this is initialization step” then
begin [Initialization.]

“get adjacency relation”;

~~~~~~~~~~~~~~~~~~~ -.5 -.-- 
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[Ii) is special because it is the process that creates the domain.
Thus for IX) this operation entails creating the domain and bilinear
fo rm (assigning numbers to all subdoinains) , sending the pieces of the
domain and bilinear form to the appropriate geometric processes , and
saving a copy only of the adjacency relation on the existing sub-
domains . IX) keeps one copy of this relation , sending one copy to
the control process and one to every other user process. For
U . ,  1 ~ j ~~ b , this operation entails only receiving this informa-
t1on from IX)”]
“create initial load and mesh”

[This operation can take as long as is necessary for a j th user to
arrive on the scene . It can make use of the adjacencies direc tly,
or the bilinear form by querying the appropriate geometric processes .
This operation (and the preceding one) represent pre-processing and
can be arbitrarily complex.]

end [Initialization.]

else
begin [Processing step.]

“get control of finite-element system and send a copy of status record
to it” ;
“send load and mesh pieces to appropr iate busy geometric processes ”;
signa l :=

report := none;

for i := 1 ~~~~ 1 until b~ 
do

[The bound on the number of commands a user may g ive is b~ .J
begin [User ’s turn.]

if signal = 
~2. ~~~begin

if “satisfied with report” then
begin

“command control to stop” ;
signal :=

end
else

begin
“make a command, referring to report and old status records” ;
“send command to control” ;
report := “received report” 

- - .  ~~. - —— — ---- —-- _
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end
end [User ’s turn.]

“get load and mesh pieces back from busy geometric processes ”;
“get updated copy of status record back and g ive up control of system” ;
“post-process”
[Ikiring post-processing , the user may get informat ion about the bilinear
form by querying subdomain processes. I

end [Processing step.]
end [Step of user process.]

The Control Process

State contains:

(1) phase (is this the initialization step or a subsequent step?) ;

(2) adjacency relation on subdomains.

Successor function:

begin [Step of contro l process.]
if “this is initialization step” then
“get adjacency relation”

- 
- else

begin [Processing step.]
status := “received user status”;
[Getting the control process to accept its status record is how a
user gets exclusive access.]

signal :=

for i := 1 step 1 until bc ~2.
[The bound on the number of commands a user may give is be.]

begin [One user ’s turn.]
if signal = £2. then
begin

command := “received command” ;
if command !.~2E !~signal :=

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~ .-. ; ~~~~~~~~~~~~~~~ . ~~~~~~~ ~~~~~~~~~~~~~~~~ -~
---- -
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else
begin [Command execution . J
[This code appears subsequently.]
end [Command execution.];

“return report to user”
end

end [One user ’ s turn.]
“return updated status to user” ;

end [Processing step.]

end [Step of control process.]

begin [Command execution.]
inner-signal : 

~2~
;

for k : 1 step 1 until bT ~.a[The bound on the number of solution passes per command is bT .]
if inner-signal = 

~2 then
begin

if “command execution finished” then
[This is decided by an algorithm whose arguments are the command
and the status record , which contains the results of the last
solution pass. Alternatively, it can be decided by asking a user
supplied decision process , which does nothing but answer such
questions and is not explic itly described here.]
inner-signal :=

else
begin [Solution pass.]

“decide cutoffs”;
[As above , this decision can be done manually or automatically
and can be based on the same information.]
“command all busy 2-subdomain processes to refine to cutoffs” ;
“receive answers from all busy 2-subdomain processes”;

[Each answer consis ts of a list of points to be included in the
solution , plus data needed to calculate the costs of refinement
and solution.] 

- 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - ~~~~~~~~~~~~~~~ - : ~~~~~~~
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“command all busy 0- and l-subdomain processes to report” ;
[By this time these processes know which of their points are
to be included in the solution and send them to the control
process.]

“receive answers from all busy 0- and l-subdomain processes”;
“calculate solution subsets” ;
“record costs of this solut ion pass in status record” ;
[At this time all cost factors (number of elements refined,
sizes of linear systems, number of elements included in solution)
are known.]
“send point lists to active solution processes and solution
process names to 2-subdoinain processes included in solution”;

“receive reports from all 2-subdomain processes included in
solution”;
“update status record with new error information”

end [Solution pass.]

end

end [Command execution.]

2-Subdomain Processes

Named Sl through Sb5, where b5 is the bound on the number of

2-subdomains in the domain.

State contains :

(1) domain (subdomains adjacent to this one, mapping functions, appro-

priate piece of bilinear form);

(2) load (appropriate pies-es of user-dependent information: boundary

conditions and load functional);

(3) mesh (appropriate piece of user-dependent mesh , with solutions) .

Successor function:

begin [Step of 2-subdomath process.]
“get command” ;
[At the beginning of each step , this process waits until it gets a command
to execute . Each command consists of a type and some data.]

- 
-
~~~~
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if “command to initialize domain” then
[This command comes from IX).]

“set domain structure to value of data”
else if “command to ini tial ize user ” then
[This command comes from a user process.]

“set load and mesh structure to value of data”
else if “command to f inal ize user” then
[This command comes from a user process.]

“send load and mesh back”
[Since there will only be one user waiting for this information , the
identity of the par ticular user need not be known by this process.]

els e i f “command is a query” then
[A - .~uery can come from any user doing pre- or post-processing, or another
geometric process.]

begin
“fo rmulate answer ” ;
[A query can ask anything about the local data of this process.]

“send answer”
[Since only one ques tioner is waiting for an answer , its identity need
not be known.]

end

else if “command is to refine” then
[This command comes only from the control process.]

begin

“refine elements above high error cutoff’;

[This may entail updating adjacent 1-subdomains with new points . ]
“collect solution information”;

[Including all new elements and all those above the low error cutoff,
make a list of all active nodes , plus a tally of refined and active
elements.]

“send solution information to control”
end

else if “command is to solve” then
[This command comes only from the control process.]

~~~T .~~~~~~ i.- - - 
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begin
“compute micro-stiffness matrices and right-hand sides for all active
elements”;
[These can be done in parallel and may entail queries to adj acent
0- and 1-subdomain processes.]
“send to solution process”
[The identification of the solution process is the data.]

end -

else

[The only remaining kind of command comes from a solution process and
brings new solutions.]

beg in
“put new solutions in mesh” ;
“calculate new error indicators on active elements’ ;

[These can be done in parallel.]
“formulate a report”;

“send report to control process”
end

end [Step o~ 2-subdomain process.]

0- and l-Subdomain Processes

Named P1 through Pb~ and Ll through Lbz , where b~ and b~ are

the bounds on the numbers of 0- and l-subdomains , respectively.

State contains :

(1) domain (subdomains adjacent to this one , mapping functions , appro -

priate pieces of bilinear form for 1-subdomain processes);

(2) load (boundary conditions and load functional) ;

(3) mesh (appropriate pieces of user-dependent mesh with solutions).

Successor func tion:

- ~~~~~~ .-.5— — — - —  — -.5 - ————.5 —.5—-,— ., .5 - i-. 
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begin [Step of 0- or 1-subdomain process.]
“get command”;
[The commands to initialize the domain, ini tializ e a user , finalize a
user, or answer a query, are identical to those for 2-subdomains and
will not be repeated here.]

if “command is to update” then

[This command can only come from another subdomain process.]
“perform requested update of local data”

else if “command is to report ” then
[This command comes only from the control process.]
beg in

“collect solution information and reset” ;
[The solution information is the list of points to be included in
the solution . Since this decision can only be made as a result of
queries and updates from 2-subdomain processes during refinement ,
that information is kept during refinement and reset here (so that
a different set of nodes can be active in the next solution pass).]
“send to control process”

end
else

[The only remaining command brings new solutions from a solution process.]
“put new solutions in mesh”

end [Step of 0- or 1-subdomain process.]

Solution Processes

Named Vl through Vbv~ 
where b~ is the bound on the number of

simultaneous solutions .

State contains: nothing.

Successor function :

begin [Step of solution process.]

“get point list from control process”;

“make template of linear system”;
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for j . := 1 !.~~ 1 until “number of 2-subdomains involved” do
beg in

“get micro-stiffness matrices and right-hand sides from a 2- subdoma in
process”;
[The 2-subdoinain process can be any one of those assigned to this
solution process, presumably the one that is ready next.]
“assemble list into linear system”

end;

“solve linear system”;

“send solutions to appropriate geometric processes”
[Each point has a unique name which includes the subdomain to which it
belongs.]

end [Step of solution process.] 
—  
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A design for a novel prototype finite element system is presented which meets
the following four goals: (.a~ The system constitutes an application-indepen-dent finite element solver for a certain class of linear elliptic problems
based on a weak mathematical formulation; (1,~ it incorporates extensive
adaptive approaches to minimize the critical decisions demanded of the user;
(c)- it incorporates adaptive error estimation techniques to provide an optimal
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20. Abstract (continued)

~~ advantage of natural parallelism and n~ dularity to increase the size
of the practically solvable problems. The overall system structure is
described in terms of parallel processes and is iinplementable on a
wide variety of hardware configurations. The experiments planned to
evaluate the various new approaches are also presented.
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